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Breast cancer is the most common type of cancer, predominantly among women over 20, whereas colo-rectal cancer
occurs in both men and women over the age of 50. Chemotherapy of both cancers affect rapidly growing normal as well as
cancer cells. Cancer cells are non-apoptotic. Seven anti-cancer agents (cis-platin, Tamoxifen, Melphalan, Betulinic acid,
D-PDMP, L-PPMP, and GD3) have been tested with human breast (SKBR3) and colon (Colo-205) carcinoma cells for their
apoptotic effect and found to be positive by several assay systems. Colo-205 cells were obtained from ATCC, and the
SKBR3 cells were a gift from the Cleveland Clinic. All of these six agents killed those two cell lines in a dose-dependent
manner. In the early apoptotic stage (6 h), these cells showed only a flopping of phosphatidylserine on the outer lamella of
the plasma membranes as evidenced by the binding of a novel fluorescent dye PSS-380. After 24 h of the treatment, those
apoptotic cells showed damage of the plasma as well as the nuclear membrane as evidenced by binding of propidium iodide
to the nuclear DNA. DNA laddering assay viewed further breakdown of DNA by 1% agarose gel electrophoresis analysis.
It is concluded that during apoptosis the signaling by Mitochondrial Signaling Pathway (MSP) is stimulated by some of
these agents. Caspase 3 was activated with the concomitant appearance of its p17 polypeptide as viewed by Westernblot
analyses. Incorporation of radioactivity from [U-14C]-L-serine in total sphingolipid mixture was observed between 2 and 4
micromolar concentrations of most of the agents except cis-platin. However, apoptosis in carcinoma cells in the presence
of cis-platin is induced by a caspase 3 activation pathway without any increase in synthesis of ceramide.
Published in 2004.
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Introduction

Apoptosis, or programmed cell death [1,2] plays an important
role in normal cell development and in cells under diseased
conditions as well. Tumor or cancer cell death can be trig-
gered by necrosis or apoptosis induced by anti-cancer drugs or
agents [3–7]. However, during chemotherapy [8,9] how these
agents induce apoptosis in a specific cancer cell is little known
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and needs to be explored carefully [10,11]. During apoptosis
there are morphological and molecular changes. Morphological
change includes: chromatin condensation, cytoplasmic shrink-
age, and plasma membrane blebbing. Swelling and permeabil-
ity change of mitochondrial membrane occurs with the release
of cytochrome c from the mitochondrial inner membrane. Dur-
ing induction of apoptosis, randomized distribution of phos-
phatidylserine occurs on the plasma membrane (from the inside
to the outer leaflet). There are some major proteins playing im-
portant roles in apoptotic processes that initiate the activation of
Caspases, Adaptor Proteins, and TNF Receptor Super Family
with concomitant degradation of chromosomal DNA. However,
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Figure 1. Structure of apoptotic drugs.

very little is known about the discontinuity of DNA synthe-
sis or stability of the Replication Complex [12,13] (containing
DNA Polymerases, Primase and Helicases) during apoptotic
processes. Our present studies indicated that these anti-cancer
agents (Figure 1) could be effective drug or apoptotic agents
causing increased degradation of DNA and inhibition of DNA
synthesis also. The effectiveness of their antitumor activities
in the body depends on the successful delivery of the drugs to
the specific tumor area in the body. In the following section we
would like to discuss about some background work done with
each of the anti-cancer agents used in our present studies.

Tamoxifen (TMF)

Inflammatory breast cancer (IBC) is the most aggressive form of
breast cancer disease. A nationwide (US) survey [14,15] con-
ducted among 40 to 59 years old women from 1994 through
1998 showed a rate of 1.3 per 100,000 for all races combined.
African-American women had the highest risk of IBC (1.6)
and Asian and Pacific Islander women the lowest (0.7). Despite
decades of use and considerable research, the role of estro-
gen alone in preventing chronic breast cancer disease in post-
menopausal women remains uncertain. In addition to breast
cancer [16–18], Tamoxifen (TMF) has been shown to cause

apoptosis in various cancer cells [19–25] including human cer-
vical carcinoma (HeLa), murine erythroleukemic (MEL) cells,
AIDS-related Kaposi Sarcoma cells, head and neck cancer cells,
pituitary tumor cells, human hepatoblastoma (hepG2) cells,
human glioblastoma cells, rat glioma cells, and in multiple
myeloma cell lines. Apoptosis could be a major mechanism
of the antitumor effect of many anti-cancer agents. Normal
human mammary epithelial cells (HMECs), unlike estrogen
receptor-positive (ER+) breast cancer cells, typically express
low nuclear levels of ER (ER-poor). It has been demonstrated
recently that ER-poor HMECs acutely transduced with human
papillomavirus-16E6 (HMEC-E6) also went through apoptosis
(induction of rapid MSP, mitochondrial-signaling pathway) in
the presence of 1 µM Tamoxifen. TMF could be more effective
at low doses if it is targeted properly.

Cis-platin (cis-DDP)

Pre-operative chemotherapy is most important in clinical treat-
ment in testicular, ovarian, or breast cancer patients. In case of
testicular cancer treatment, multiple anti-cancer drugs such as
Adriamycin, cis-platin (cis-DDP), cyclophosphamide (CPM),
methotrexate (MTX), and Vincristine (VCR) are commonly
used in combination. Cis-DDP (cis-platin) is effective as an
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Figure 2. Mitochondrial signaling pathway (MSP) scheme.

anticancer agent in the testicular cancer, but it is rarely used for
breast cancer patients. Recently, it has been demonstrated that
CDDP specifically induces apoptosis via activation of Caspases
(−3, −6, and −8) in osteosarcoma [27] and ovarian cancer cells
[28]. Only recently it has been found that pretreatment with
cis-platin increases the effectiveness of Tamoxifen treatment in
breast cancer patients [20].

Recently, we reported that the mechanism of action of
cis-platin inhibition (Figure 3) of replication is mediated by
binding to DNA as well as polymerase α enzyme [29].Cis-
platin binds to the Zn-binding domain of the DNA Polymerase-
α much tighter (1000 times stronger) than the binding with the
N-7 position guanine groups in DNA [30]. From our 2D-NMR
studies we concluded that the divalent Pt (II) binds with two
vicinal Cysteine groups at the Zn-binding domain of the en-
zyme (Figure 3) [31]. It is believed that in some cancer cells,
the components of the apoptotic signaling pathways are ex-
pressed but remain inhibited until proper signaling is triggered.
Whether cis-platin inhibits any inhibitory action of apoptosis is
not known yet (Figure 4).

Figure 3. Possible mechanism of cis-platin binding to the zinc-finger domain of DNA Polymerase-α.

This information prompted us to study the apoptotic effect of
cis-platin on colon carcinoma cells Colo-205 and human breast
cancer SKBR3 cells. From our present studies it is evident that
induction of apoptosis by cis-Platin perhaps occurs by a non-
MSP (mitochondrial signal transduction pathway) by activa-
tion of Caspase-3 (Figure 2). Both testicular and breast cancer
patients are treated with high doses of cis-platin. Liposomes
[32] encapsulated cis-platin is expected to reduce the effective
concentration of cis-platin from 100 micromolar to 5 to 10 mi-
cromolar range (below toxic level) for induction of apoptosis.

Betulinic acid (BetA)

Betulinic acid is a naturally occurring pentacyclic triterpenoid
(Figure 1), which has demonstrated selective toxicity against
a number of specific tumor types and a variety of infectious
agents such as HIV [33], the Malaria parasite, and bacteria
[34]. Biological activity was demonstrated in melanoma cell
lines [35] and was confirmed in mice bearing human melanoma
xenografts [36]. BetA exhibited potent antitumor activity on
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Figure 4. A scheme of probable role of cis-platin in the apoptotic pathway.

neuroblastoma cells resistant to CD95 or doxorubicin-triggered
apoptosis and on primary tumor cells from patients with neurob-
lastodermal tumors [37]. BetA treatment results in the release
of soluble apoptogenic factors such as a cytochrome c or Apaf-1
from mitochondria into the cytosol. Detailed study on the acti-
vation of Caspase pathway in colon and breast carcinoma cell
lines has not been established yet.

L-PPMP and D-PDMP

The microdomains (rafts) on the cell surfaces contain aggre-
gates of glycosphingolipids (GSLs), sphingomyelin (SM), and
cholesterol. These lipid-islands while floating on the phos-

Figure 5. Inhibition of GlcT in the proposed pathway for biosynthesis of gangliosides and SA-LeX by PPMP and PDMP.

pholipids bilayers do also contain various signaling molecules
such as Src family kinases and transmembrane receptors. Mi-
crodomains are believed to mediate extracellular signals. GSLs
are assumed to function as a regulator of various proteins in the
microdomains. Until now very little information is available on
the direct role of GSLs in the regulation of the GSL or other
gene-function. In recent years, several reports are available on
the induction of MSP (Mitochondrial Signaling Pathway) by
Ceramide and GD3 [38–46]. We have reported recently the in-
duction of MSP in both Colo-205 and SKBR3 by exogenously
added GD3 or GD1b [11,26]. Introducing SAT-1 gene (Figure 5)
in Lactosyl-Ceramide-expressing cells (cloned from wild type
3LL Lewis lung carcinoma cells) [47], it was observed that
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anchorage-independent growth was promoted, and expression
of PDGFα-receptor mRNA was specifically reduced. We have
also observed recently [10] that during apoptosis of breast can-
cer cells by L-PPMP, the crucial GalT-4 activity (Figure 5) that
catalyzes synthesis of the intermediate nLcOse4Cer, a precursor
of SA-LeX (carcinoma cell surface antigen), is also modulated
(decreased).

Ceramide is a transmembrane sphingolipid composed of an
N-acylated (C14 to C-fatty acids) sphingosine (C18-erythro-4,
5-trans unsaturated amino alcohol] in most of the eukaryotic
animal cells. In yeast cells [48,49] and squid cells [50], polyun-
saturated sphingosine has been reported. Ceramides containing
phyto-sphingosines are quite common in plant cells [51–53].
Hydrolysis of sphingomyelin (SM) to generate ceramide in
HL-60 human leukemia cells in response to the action of 1,25-
dihydroxyvitamin D3 led to the suggestion that sphingolipid
metabolism is regulated in response to extracellular agents
[54,55]. Ceramide-induced cell death is also correlated with
DNA-fragmentation in the apoptotic programmed cell death
[46]. Several comprehensive reviews have been published re-
cently on the role of exogenously added ceramide in the apop-
tosis of cultured tumor cells [56–60].

In spite of many papers published on this subject, very little is
known about generation of ceramide during apoptosis by anti-
cancer drugs in the cancer cells. Our present goal is to correlate
the changes in the expression of cancer cell surface glycosphin-
golipids with apoptosis induced by anti-cancer drugs, inhibitors
of glycosphingolipid biosynthesis (L-/D-PPMP; L-/D-PDMP),
and disialogangliosides (GD3 and GD1b) (Figure 1). The in-

Figure 6. Signal transduction by intracellular ceramide.

stant production of ceramide under stress could occur by the ac-
tion of sphingomyelinase (SMase) as well as by the action of the
novel ceramide glycanase (CGase; Figures 6 and 7) that cleaves
between ceramide and the oligosaccharides [61–63]. Activity
of CGase is widely distributed in nature: (bacteria [64], leech
[65], clam [62], rat mammary, and other tissues [61] as well
as in human colon carcinoma cells [63]). Regulation of CGase
activity during apoptosis or metastasis is under study in our
laboratory. It appears that in addition to SMase (sphingomyeli-
nase), CGase (Figures 6 and 7) may have had an important
role in cell signaling. Ceramide produced by the action of these
two enzymes could lead to the production of sphingosine or
sphingosine-1-PO−2

4 , (Figure 7) which have been recognized
in recent years as bio-regulators (66.67).

GSLs are synthesized from ceramide (Figure 5) in the
Golgi [68–70], and are subsequently distributed to dif-
ferent compartments of a cell, most predominantly in the
plasma membrane where they are recruited by signaling
microdomains (rafts). A recently characterized trafficking
of ceramide [59,60,71] and GD3 ganglioside to mitochon-
dria [38–41,47] has revealed a novel function of this GSL
as a death effector. These observations initiated the idea
that some of the GSL-GLT (glycolipid glycosyltransferase)
activities could be regulated during metastasis or apoptosis
induced by anti-cancer agents. However, SA-Lex (SAα2,3Gal
β1,4(Fucα1,3)GlcNAcβ1,3Galβ1,4Glc-Ceramide), and
SA Lea(SAα2,3Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4Glc-
Ceramide) have been suggested as markers for metastatic
breast carcinoma cells [72–74].
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Figure 7. Modulation of cell signaling by ceramide and sphin-
gosine.

Biosyntheses in vitro of GD3 and SA-Lex from ceramide
and related GSLs in embryonic brains and in metastatic
breast and colon carcinoma cells (Figure 5) have been
studied in our laboratory in recent years [75–87]. The
glycolipid-glycosyltransferases (GSL-GLTs) that catalyze
the synthesis of GD3 from ceramide are GlcT-1 (UDP-
Glc: Ceramideβ1,1glucosyl transferase [69,70,76,83];
GalT-4 (UDP-Gal: LcOse3Cerβ1,4galactosyltransferase
[70,76,83,85]; SAT-1 (CMP-NeuAc: LacCer α2,3Sialyl trans-
ferase [70,75,76,83,87] and SAT-2 (CMP-NeuAc:GM3gα2,8
Sialyltransferase [68,70,75–77,84] (Figure 5). All of those
GSL-GLT activities were initially characterized in developing
chicken brains [69,70,75–77,81,83,84–86], and carcinoma
cells [78–80,82,83] in this laboratory. However, transcriptional
or posttranslational regulation of these transferases during
apoptosis initiated by anti-cancer drugs and agents mentioned
above are not known yet and will be the future field to be
explored.

Materials and methods

Cell culture

The human colonic cancer cell line (Colo-205) and the breast
cancer cell line (SKBR3) were grown in RPMI1640 and
DMEM media, respectively, supplemented with 10% fetal
bovine serum, 100 units/ml penicillin, 100 µg/ml streptomycin,
and 50 mM L-glutamine. Human breast carcinoma cell lines
SKBR3 were obtained from the Cleveland Clinic, Cleveland,
OH, and have been maintained in our Notre Dame laboratory for
the past two years. Colo-205 cells were purchased from ATCC,
have been maintained in our laboratory for several years, and
have been used to elucidate the SA-LeX biosynthetic pathway
and the identification of all the GSL-glycosyltransferases in-
volved in that pathway [79–84]. When cells were 90% confluent
(5 × 106 per 25 cm2 T flask, they were passaged or harvested
for biochemical work. The semi-confluent cells were treated
twice with 0.5 mM hydroxyurea for 24 h under the same cultur-

ing conditions to obtain synchronized cultures before apoptotic
reagents were used. Hydroxyurea was removed, and cells were
treated with different apoptotic reagents, Tamoxifen, cis-platin,
D-PDMP, L-PPMP, Melphalan, and GD3 (Colo-205/ Figure 8;
SKBR3/ Figure 9), and 0.5 µCi 14C-Serine per T-flask to study
in vivo (in whole cells) biosynthesis of sphingolipids for 24 h.

Analysis of radioactive sphingolipids synthesized from
14C-L-Serine

The C-2 and C-3 Carbons of L-serine are incorporated into C-1
and C-2 of the Sphingosine, respectively, when added to media
containing non-apoptotic or apoptotic cells. After incubation
with 0.5 to 1.0 µCi/T-flask, cells were scraped off and trans-
ferred into 12-ml graduated conical tubes followed by 2 times
of phosphate-buffered saline (PBS) wash. Finally all the cells
were suspended in 5 ml PBS, and cell counts are performed.
These cells are used for further analysis of incorporation of ra-
dioactivity of [14C] L-serine in radioactive total sphingolipid,
glycosphingolipids, and ceramide following protocol as indi-
cated in our recent publications [10,11,26].

GF/A Filtering Assay-0.5 ml suspension of cells is loaded
onto a GF/A glass filter, which had been treated with 50 mM
sodium pyrophosphate. Then the samples (in duplicates) on
each GF/A disc were washed twice with 5% TCA followed
by 2 times chloroform/methanol (2:1) wash and acetone wash;
GF/A discs were then fully dried and counted in toluene scintil-
lation system. Incorporation of radioactivity was determined in
protein as well as total sphingolipids [10,11,26]. Sphingolipids
were further analyzed as follows.

Extraction and analysis of radioactive of glycosphingolipids

Labeled cells (0.5 ml) were centrifuged and resuspended with
0.2 ml 0.1 M NaOH and 0.5 ml chloroform/methanol (2:1) and
incubated at 37◦C for 1 h. Fifty microliters upper layer or lower
layer was then spotted onto a 4 cm2 Whatman 3MM paper
and quantitated by toluene scintillation system. The extraction
procedure has been published previously [11] and is described
in the previous section also. The radioactivities on these dried
discs were quantitated with a toluene scintillation system. The
rest of the harvested cells were then used for extraction of [14C]-
GSLs using 0.05 to 0. 1 ml of CHCl3: Methanol (2:1) and
0.2 volume of 0.1 N NaOH. The upper layer and the lower
layer were separated and dried before further analysis by TLC
using specific solvent systems. Incorporation of radioactivity
in ceramide was quantitated by TLC, using CHCl3-Methanol-
water (80:18:2) solvent system. Migration of radioactivity in
standard ceramide or GSLs areas were scraped and quantitated
by the toluene liquid scintillation system. For further analysis of
radioactive glycosphingolipids and ceramide, larger quantities
of cells were extracted as above, concentrated, and purified by
silicic acid columns, and further analyzed by TLC plates as
published previously [83–88].
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Figure 8. Apoptosis of human colon carcinoma colo-205 cells by anti-cancer agents (cis-platin, L-PPMP, tamoxifen, melphalan,
and betulinic acid). [Phase contrast microscopic studies]

Figure 9. Apoptosis of human breast carcinoma cells by anti-cancer agents (L-PPMP, betulinic acid, tamoxifen, and GD3 ganglio-
side). [Phase contrast microscopic studies].
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Western blot for identification of activation of caspases

Drug treated cells (0.5 ml aliquots) were pelleted and resus-
pended with 0.1 µl lysis buffer (62.5 mM Tris-HCl pH 6.8, 2%
w/v SDS, 10% glycerol, and 50 mM DTT) followed by homog-
enization with 3 × 10 s sonication. The homogenized samples
were then incubated at 37◦C for 1 h before 5 min of denaturation
at 95◦C and loaded onto SDS-PAGE gel. The protein mixture
in the amount of 20 to 25 micrograms was loaded for each sam-
ple and blotted to nitrocellulose membranes; further methodol-
ogy was published in our recent publications [10,11,26]. Non-
specific binding was blocked by incubation in Tris-buffered
saline containing 5% bovine serum albumin [89] and 0.1%
Tween-20 for 1 h at room temperature. The blots were then
incubated overnight at 4◦C in blocking buffer containing the pri-
mary antibody. Antibodies used were a rabbit polyclonal anti-
Caspase-3 antibody raised against full-length human Caspase-3
diluted 1:1,000. Afterward, membranes were washed and in-
cubated with anti-rabbit IgG-Alkaline phosphatase conjugate
(1:3,000; Sigma). Antibody-conjugated alkaline phosphatase
activity was visualized using the NBT-BCIP reagent in the AP
buffer (100 mM Tris-HCl pH 9.5, 100 mM NaCl, and 5 mM
MgCl2). Activation of Caspase-3 in apoptotic Colo-205 cells in
the presence of cis-platin (Figure 12) and SKBR3 cells in the
presence of GD3 ganglioside [10] was observed.

Fluorescence staining of PSS-380 and Propidium Iodine

Cells cultured on Falcon Microslide System (Fisher) were syn-
chronized 2 times (24 h each) with 0.5 mM hydroxyurea be-
fore treatment with apoptotic reagents under different condi-
tions. The cells were then washed 2 times with TES buffer
(5 mM N-tris [Hydroxymethyl]-2-aminoethane-sulfonic acid:
TES, 150 mM NaCl, pH7.4), followed by incubation with
200 µl new TES buffer containing 25 µM PSS-380 [90] and
0.25 µg/ml Propidium Iodide at 37◦C for 10 min. The buffer
was removed after staining, and the cells were washed with
TES buffer once before observation for fluorescence [11]. The
PSS-380 dye was used instead of annexin-V [91] to recognize
phosphatidyl serine on the outer leaflet of the apoptotic cells.

DNA laddering analysis

Colo-205 cells (0.5 ml) are pelleted and resuspended with 0.1
ml lysis buffer (20 mM Tris-HCl pH 8.0, 20 mM NaCl, 20 mM
EDTA, and 10% w/v SDS) followed by sonication for 3 × 10 s.
The homogenized samples are incubated at 37◦C for 1 h be-
fore adding 0.4 ml deionized water and 100 microgram/ml Pro-
teinase K. After that Phenol/chloroform (1:1) 0.5 ml) was added
to the homogenate, vortexed, and placed in ice for 15 min. The
samples were centrifuged at 4◦C (5,000X g) for 20 min. The
upper layer was then transferred to a new tube and 0.5 ml of
chloroform was added to it. Further analysis of the degraded
DNA (Figure 10) was performed by the method published re-
cently [10,11].

Figure 10. DNA laddering examination with apoptotic human
colon carcinoma Colo-205 cells treated with cis-platin.

Results and discussion

DNA laddering analysis with the apoptotic carcinoma cells
initiated by L-PPMP

Treatment of human carcinoma cells (phase contrast picture
of colon, Colo-205 cells; Figure 8) and (phase contrast pic-
tures of breast, SKBR3 cells; Figure 9) with varying concen-
trations of cis-platin, L-PPMP, Tamoxifen, GD3, Melphalan
or Betulinic acid led to observed cell blebbing and DNA con-
densation, while the control cells remained uniformly round
and smooth on the outer surfaces with no damaged DNA as
evidenced from negative staining by Propidium Iodide. The
DNA laddering [92] resulted in altering UV Fluorescent bright
and dark bands, and increased concentration of cis-platin (33
to 132 µM) led to brighter banding, indicating a greater de-
gree of systematic DNA fragmentation (Figure 10). Similar
results were observed with the isomers of L-PPMP or L-/D-
PDMP [10]. The observed blebbing of both the Colo-205 and
the SKBR3 cells with cis-platin and isomers of GSL: GlcT (glu-
cosyltransferase) inhibitors (L-/D-PPMP or L-/D-PDMP) sug-
gested that these agents were inducing apoptosis in these carci-
noma cells after 6 h and damaging DNA between 24 and 48 h
after treatment. Recent report shows [93] treatment of multidrug
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Figure 11. Effect of anti-cancer agents (cis-platin, D-PDMP, tamoxifen and melphalan) on the synthesis of sphingollipids in apoptotic
humna colon carcinoma Colo-205 cells.

resistant P-glycoprotein (P-gp) expressing cancer cells (MCF-
7-ADR) (Adriamycin resistant breast cancer) with L-PPMP
diminishes expression of MDR1 and enhances responses of
chemotherapy.

Incorporation of 14C-Serine in ceramide in apoptotic
carcinoma cells

Synchronized Colo-205 cells were treated with cis-platin
(Figure 11a), D-PDMP (Figure 11b), Tamoxifen (Figure 11c)
and Melphalan (Figure 11d), in the presence of uniformly la-
beled L-14C-Serine. Incorporation of radioactivity was deter-
mined in total sphingolipids in Figure 11a, c, and d whereas

Figure 12. Activation of caspase-3 in human breast carcinoma cells treated with cis-platin.

the panel b represents the incorporation of radioactivity in
live Colo-205 cells per 106 cells before and after chloroform-
methanol wash only. Maximum incorporation of 14C-serine into
the total sphingolipid was observed in Colo-205 with Tamox-
ifen (Figure 11c) and Melphalan (Figure 11d) at concentrations
between 2 and 4 µM. Inhibition of incorporation was observed
in higher concentrations of the anti-cancer agents. The reason
for increase in total sphingolipids in the presence of 2 to 4 mi-
cromolar D-PDMP (Figure 11b) and other anti-cancer agents in
Colo-205 apoptotic live cells could be due to transient increase
in the concentration of ceramide in those apoptotic cells. In case
of cis-platin (Figure 11a) the total sphingolipid synthesized re-
mained almost constant over a range of 20 to 150 micromolar
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Figure 13. Identification of apoptotic carcinoma cells by fluorescent dyes (PSS-380 and propidium iodide), a scheme.

Figure 14. Fluorescent microscopy of the apoptotic human breast carcinoma SKBR3 cells induced by cis-platin (25 and 100 µM
after 24 h.
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Figure 15. Fluorescent microscopy of the apoptotic human breast carcinoma SKBR3 cells induced by L-PPMP (2 and 16 µM)
after 24 h.

Figure 16. Fluorescent microscopy of the apoptotic human breast carcinoma SKBR3 cells induced by betulinic aid (40 and 80 µM)
after 24 h.
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range. The increase in radioactive sphingolipids in live cells
could be due to the presence of cis-platin resistant live cells.

Westernblot analysis of Caspase-3 activation in apoptotic
carcinoma cells by GSL biosynthesis inhibitors (L-/D-PPMP)

Caspases make up part of the cascade a cell follows in order to
undergo apoptosis. Caspase-3 is one of the effector Caspases
[10]. When activated, it cleaves proteins by recognizing the
amino acid sequence DEVD. Upon recognition of the target
proteins, the nucleus is broken down, starting with the disas-
sembly of the chromosomes [10]. We have studied extensively
the Caspase-3 activation in the presence of all the isomers of
the inhibitor of GlcT (UDP-Glc: Ceramide β1,1 glucosyltrans-
ferase) [10,11,26]. A typical activation profile of Caspase-3 as
evidenced in SKBR3 cells in the presence of cis-platin (50 to
150 micromolar) is shown in Figure 12. Appearance of p 17 pep-
tide fragment from the pro-Caspase-3 p 32 was observed when
tested by Western blot analysis (see method section). These re-
sults suggested the involvement of Caspase-3 activation during
apoptosis of the human breast carcinoma cells (SKBR3) oc-
curred only at a high concentrations of cis-platin. At present
it is not known why this drug is effective mostly with the tes-
ticular cancers and not in other cancers. Perhaps the transport
of this inorganic drug is limited from cell to cell. A similar
study is needed with cultured testicular cancer cells to test the
comparison of effective concentrations needed for caspase-3
activation.

Detection of translocation of membrane phosphatidylserine
using a novel fluorescent dye

One important phenomenon of apoptotic cells is the randomized
distribution of phosphatidylserine (PS) between the inner and
outer leaflets of the plasma membrane. In normal cells, the phos-
phatidylserine is present in the inner leaflet of the cell membrane
[90]. During apoptosis the flopping of phosphatidylserine from
inside to the outer leaflet of the cell membrane can be detected
(Figure 13). Recently, at Notre Dame a novel dye, PSS-380,
has been synthesized that can bind phosphate derivatives with
negative charges (e.g. phosphatidylserine or DNA at physio-
logical pH) [90]. However, the dye PSS-380 does not bind to
the nonapoptotic or undamaged cancer cells [10,11,26,90] The
dye, PSS-380, could be used as a membrane phosphatidylserine
detector in the early as well as late stages of apoptotic processes
instead of annexin V [91]. In the later stage of apoptosis, as it
is shown here the cell membrane permeability changes; then
both PSS-380 and Propidium Iodide (a DNA binding dye (11))
can enter into the cell nucleus. In this experiment, synchronized
SKBR3 cells were treated at first with cis-platin (Figure 14), L-
PPMP (Figure 15) or Betulinic acid (Figure 16), washed twice
with TES buffer (5 mM TES, 150 mM NaCl, pH7.4), and then
the dyes PSS-380 (25 µM) and Propidium Iodide (0.25 µg/ml)
were added. Within 24 h of treatment of SKBR3 cells with the
anti-cancer agents, the dye PSS-380 [90] binds to both outer

and inner leaflet phosphatidylserine (PS) with apparent dam-
age of the outer plasma membrane also. However, in our pre-
vious papers we published no apparent damage of the outer
membranes after 6 h of treatment with those ant-cancer agents
(L-PPMP) [10,26] and GD3 (11,236). During 6 h of apoptosis
the dye PSS-380 bound to the phophatidylserine of the outer
leaflet only. The degree of apoptosis increased with increasing
concentration of the agents. The nuclear membrane and DNA
damage were evidenced by the appearance of bright red fluores-
cence (right panels of Figures 14 to 16). The Propidium Iodide
dye bound to nuclear DNA with red fluorescence.
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